Attrition Mill Grinding of Refractories

JOHN E. BECKER
Union Process, Inc., Akron, OH

The principles and applications of wet and dry grinding refractory materials in the attritor, a high-energy stirred ball mill, are presented. Batch, circulation, continuous, and high-speed attritors are described along with the advantages of attrition milling and specific applications. Attrition mill fine grinding of refractories vs. conventional fine grinding methods are compared to relative cost/energy effectiveness, speed, temperature control, and particle size distribution characteristics. Available ceramic media, appropriate contamination-free linings, and accessory equipment for specific refractory applications are presented.

Introduction
The attritor, an attrition mill also referred to as a stirred ball mill, was formally introduced to the ceramic industry during the early 1980s. Since that time, the attritor has been increasingly used successfully for many advanced and high-tech ceramic applications by adapting the attritor concept to minimize contamination and wear by taking advantage of the latest ceramic parts or media materials. During the last few years, the attritor has been redesigned to a high-speed configuration for very fine and efficient dry grinding, which should be of special interest to the refractories industry.

Principles
The attritor's operation is simple and effective. The key to this efficiency is that the power input is used directly for agitating the grinding media and not for rotating or vibrating a large, heavy vessel in addition to the media charge. The attritor also uses relatively smaller size grinding media, resulting in faster and finer particle size reduction because for a given volume, there will be more impact, shear, and surface contact.

The material to be processed is charged into the stationary attritor vessel containing grinding media. The material and media are agitated by a rotating vertical central shaft with horizontal agitator arms. Standard attritor tip speeds range from 6000 to 10,000 ft/min, while the high-speed attritor runs up to 5 times faster. Impact and shearing forces result in extremely efficient size reduction to the submicron range with a narrow distribution and very little wear on the vessel walls. These impact and shearing forces are depicted in Fig. 1.

The agitator arms provide a constant moving motion of material within the vessel. The area of greatest media turbulence is two-thirds the radius from the central shaft, as shown in Fig. 2. In production attritors, the turbulence is enhanced by adding a circulating pumping system and modified agitator arm tip configurations when appropriate. Also note in Fig. 2 that grinding does not occur against the vessel wall. This adds to longer service life of the

![Figure 1. Attritor action](image-url)
vessel, allows minimal contamination from the inner lining, and makes thinner vessel walls possible, resulting in enhanced heat transfer and greater temperature control.

To illustrate the comparative efficiency of the attritor, Fig. 3 shows the effectiveness of the attritor versus the vibratory ball mill and conventional ball mill used for the ultrafine grinding of pima chalcopryite concentrate.\(^1\) Data for the vibratory ball mill is represented by the top curve, the middle two curves represent conventional ball mills, and the bottom curve depicts the attritor. At a specific energy input of about 100 kWh/T, the median particle size obtained in the attritor is about half that obtained in the conventional ball mill and about one-third that from the vibratory ball mill. At a specific energy input above 200 kWh/T, the attritor continued to grind into the sub-micron range, while the other machines can no longer effectively produce smaller particles. Thus the time required to grind sub-micron particles is much shorter with the attritor.

Grinding Media

The following equation\(^2\) can be used to relate grinding time to media diameter and agitator speed:

Figure 3. Comparisons of the effectiveness of grinding devices for the ultrafine grinding of pima chalcopryite concentrate.

116
\[T = \frac{KD}{\sqrt{N}} \]

where \(T \) is grinding time to reach a certain media particle size; \(K \) is a constant that varies depending on the material being processed, type of media, and the model of attritor being used; \(D \) is media diameter; and \(N \) is shaft rpm. This equation shows that total grinding time is directly proportional to type of media and ball diameter, and inversely proportional to the square root of the shaft rpm. Also, increasing media size increases grinding time, but decreasing the media size decreases grinding time.

Grinding media selection is based upon several interrelated factors:
- Contamination: Media wear should not adversely affect the final product or, worn media material should be removable chemically, by magnetic separator, or in sintering.
- Specific gravity: As a rule, the higher the media density, the more effective and faster the grind. Ideally, media should be denser than the product. Highly viscous slurries require a higher density media to prevent “floating.”
- Product feed size: Media diameter should be greater than the initial particle size for effective breakdown of large particles.
- Hardness: Harder media results in less contamination, greater grinding efficiency, and longer media life.
- Discoloration: Media composition must allow white or light-colored material to retain a clean color without adverse discoloration.
- pH: Some highly acidic or basic slurries may react with certain types of metallic media.
- Final product particle size: Generally, a smaller medium is more effective when grinding superfine particles.

Media sizes for attrition grinding range from 2 to 10 mm. Smaller grinding media generally result in faster particle size reduction because for a given volume there will be more impact and surface contact. As media become smaller than 2 mm, mass is significantly reduced, resulting in less impact force and longer grinding time. When ultrafine grinding is not required, larger-diameter media may prove faster and more efficient since its mass is greater.

Attritors use many different types of grinding media, each suitable for specific materials in various industries. The grinding media types currently used in the refractories industry include alumina, zirconia, zirconium silicate, steatite, silicon nitride, silicon carbide, tungsten carbide, mullite, glass, and sometimes steel. Variations of these basic types are currently available but may be restricted as to size and composition. Cost effectiveness, as well as size and composition, must be taken into consideration in determining user selection.

Features and Parts Selection

For processing refractory materials, attritors are available for wet and dry grinding. Once again, it must be remembered that in the attritor, generally over 90% of contamination will come from the grinding medium. Consequently, grinding media selection is of utmost importance. Most of the remaining potential contamination will come from the agitator arm tips, bar grids, and vessel wall.

For most wet refractory applications, a series of iron-contamination-free attritors have been designed using several types of ceramic and polymer materials to line or sleeve the attritor’s internal parts. These materials include alumina, zirconia, silicon nitride, silicon carbide, tungsten carbide, polyurethane, high-density plastics, and rubber.

In the case of dry grinding, the more abrasive-resistant materials such as alumina, zirconia, silicon nitride, silicon carbide, and tungsten carbide are used. In some cases where small amounts of metal contamination is tolerable, stainless steel vessels are used in conjunction with tungsten carbide-sleeved agitator arms and tungsten carbide-faced bar grids, while using ceramic grinding media.
Figure 4. Batch S.

A standard feature on all attritors is the jacketed vessel, or tank, which can be water-cooled or heated, depending upon application requirements. Production-sized attritors, in most cases, are equipped with a two-speed electric motor. High speed is used for the actual grinding, while low speed (1/3 high speed) is used for charging, discharging, and cleaning.

Attritors can be equipped with a tachometer, ammeter, or torque sensor to measure energy input, which is also used to monitor the grinding process, control the feeder for continuous dry grinding, and provide a profile record for process and quality control purposes. When needed, a metering pump for dispensing a grinding aid can also be installed on dry grinding attritors. Sealed covers are also available for fume and dust control or for inert atmosphere processing.

Types of Attritors
There are four basic types of attritors: batch, continuous, circulation, and high-speed.

Batch attritors (Figs. 4 and 5) are versatile and simple to operate. They are used for wet batch grinding (S series, or SC series for tungsten carbide), dry batch grinding (SDG series), and continuous dry grinding (SD series). The material is charged directly into the top of the vessel (no premixing or dispersing required) and processed until the desired particle size is achieved. Ingredients can be added at any time during the process and sampling and formulation corrections can be made without stopping the mill. For dry grinding, batch attritors can be used in either the batch or continuous mode (Fig. 6). Generally, maximum feed material size is 10 mm if the material is friable, otherwise, <10 mm material is required.

Continuous attritors (Figs. 7 and 8) are best utilized for large, continuous slurry production runs. They are for wet grinding (C series, or H series for higher rpm). The premixed slurry is pumped up through the bottom grid opening of the tall, narrow, jacketed vessel. The fineness of the product is controlled by the pumping rate or dwell time in the mill. Continuous attritors can be arranged in series, the first using larger media and coarser feed material and subsequent attritors with smaller media for finer product size reduction.

Circulation attritors (Figs. 9 and 10), made for wet grinding (Q series), use the attritor in combination with a premix/holding tank that is generally about 10 times larger than the attritor. Thus, large volumes of slurry can be ground with a smaller investment in grinding media and attritor equipment. As in the batch attritor, additional components can be added at any time, and the product can be continuously monitored for quality control. Charging and discharging times are reduced since larger volumes of slurry can be processed at one time.

The circulation attritor works on the dynamic sieve concept (Fig. 11) with the media acting as a confined bed allowing the finer particles to pass through more easily, while the coarser particles follow a more tortuous path and are ground finer, resulting in a narrower
Figure 5. Batch 100-SC.

distribution. The key requirement for this system is a high circulation or pumping rate. The entire contents of the premix tank are passed through the attritor about once every 8 min.

High-speed attritors (Figs. 12 and 13), used for batch and continuous dry grinding to finer sizes (HSA series), are normally used in the continuous dry grind mode with the material continuously fed into the top and discharged through the bottom side screen outlet, utilizing centrifugal force. The HSA is used when smaller particle feed size material (~40 mesh) needs to be ground to micron size (2–10 μm). The high-speed mill is also used to process large volumes of fibrous and polymer materials where additional shear forces are required for efficient size reduction.

Applications
Typical examples of applications are given below.
Batch attritor—batch wet grind
Material: fused silica, 50% 4 μm
Figure 6. SOG continuous dry grinding.

Attritor: 15-S. Al₂O₃-lined, tungsten carbide arms
Media: 2.5-3-mm zirconium silicate beads
Process time: 4 h
Particle size: 50% <0.5 μm

Material: zirconium oxide, 90% <10 μm
Attritor: 1-S. Tefzel-lined, tungsten carbide arms
Media: 2-3 mm ZrO₂ balls
Formulation: zirconium oxide/water (75% solids)
Process time: 15 min
Particle size: 90% <1 μm

Batch attritor—batch dry grinding
Material: zircon sand, 60 mesh
Attritor: 30-SDG. Al₂O₃, tungsten carbide arms
Media: 0.25-in. ZrO₂ balls
Process rate: 2 h for 90 lb
Figure 7. Continuous C.

Particle Size: 50% <4 μm
Batch attritor—continuous dry grinding
Material: MgO, -325 mesh
Attritor: 1-SDG, Al₂O₃-lined, ZrO₂ arms
Media: 0.1875-in. ZrO₂ balls
Process rate: 12 lb/h
Particle size: 50% <4 μm
Material: zircon sand, 40 mesh
Attritor: 1-SDG, Al₂O₃-lined, tungsten carbide arms
Media: 0.25-in. ZrO₂ balls
Process rate: 24 lb/h
Particle size: 50% <9 μm
Material: silicon carbide, -1.5 in.
Attritor: 30-SDG
Media: 0.375-in. steel balls
Process rate: 100 lb/h
Particle size: 50% <35 μm
Material: MgCO₃ (magnesite), 325 mesh
Attritor: 1-SDG, Al₂O₃-lined tank, ZrO₂ arms
Media: 0.125-in. Steatite balls
Process rate: 4.5 lb/h
Particle size: 50% <1 μm
Material: refractory fiber, 0.125-in.
Attritor: 1-SDG, Al₂O₃-lined tank, tungsten carbide arms
Media: 0.375-in. Al₂O₃ balls
Process rate: 7 lb/h
Particle size: 50% <200 mesh
Continuous attritors—wet grinding
Material: alumina trihydrate, 48% -325 mesh
Attritor: C-3, Al₂O₃-lined, tungsten carbide arms
Media: 0.25-in. Al₂O₃ balls
Formulation: alumina trihydrate/water (45% solids)
Residence time: 12 min
Particle size: 50% <4 μm

121
Figure 8. Continuous C-40.

Material: magnesium hydroxide
Attritor: C-3
Media: 2-2.5-mm ZrO₂ balls
Formulation: magnesium hydroxide/water (45% solids)
Residence time: 8 min
Particle size: 50% <2 μm

Circulation attritor—wet grinding
Material: zircon sand, 100 mesh
Attritor: Q-2, Al₂O₃-lined, zirconium oxide arms
Figure 9. Circulation Q.

Media: 0.1875-in. ZrO₂ balls
Formulation: zirconium oxide/water (65% solids)
Residence time: 12 h
Particle size: 50% <2 μm
Material: Rutile. 15 μm
Attritor: Q-2, Al₂O₃-lined, plastic arms
Media: 5-mm ZrO₂ balls
Formulation: Rutile/water (50% solids)

Figure 10. Circulation Q-25.
Figure 11. Dynamic sieve.

Residence time: 30 min
Particle size: 50% <1.5 μm

High-speed attritor—batch dry grinding
Material: graphite, 100 mesh
Attritor: HSA-1
Media: 2–3-mm zirconium silicate beads
Process time: 30 min
Particle size: 50% <5.5 μm

High-speed attritor—continuous dry grinding
Material: alumina, 100 mesh
Attritor: HSA-1, Al₂O₃-lined tank, ZrO₂ arms
Media: 2–3-mm zirconium silicate beads
Process rate: 10 lb/h

Figure 12. High-speed attritor HSA.
Particle size: 50% < 6 μm
Material: ZrO₂, -325 mesh
Attritor: HSA-1
Media: 2-3-mm zirconium silicate beads
Process rate: 7 lb/hr
Particle size: 50% < 0.5 μm

Summary
The advantages of the stirred ball mill are:
• Fast and efficient very fine particle size reduction.
• Lower power consumption.
• Ease of operation.
• Good temperature control.
• Low maintenance.
• Smaller plant area, simpler foundation, and low installation cost.
• Noise levels compatible with OSHA standards.

The limitations of the stirred ball mill are:
• Most efficient use is for fine grinding final product to 200 mesh to submicron.
• Material feed size should typically be smaller than media diameter.
• Wet grinding is necessary for the most efficient grinding of refractory materials below 1 μm.
• Limited availability of the appropriate type and size grinding media and parts for contamination-free grinding of a particular product.

References